Mathc initiation/Fichiers c : c61cb
Installer et compiler ces fichiers dans votre répertoire de travail.
c00b.c |
---|
/* ---------------------------------- */
/* save as c00b.c */
/* ---------------------------------- */
#include "x_hfile.h"
#include "fb.h"
/* ---------------------------------- */
int main(void)
{
double m = IntFlux_simpson_dydx( M, N, P,
f,
u, v,LOOP,
ax,bx,LOOP);
clrscrn();
printf(" Let S be the part of the graph of z = %s with z >= 0. \n\n", feq);
printf(" If F(x,y,z) = %si %sj %sk, find the flux of F through S\n\n\n",
Meq,Neq,Peq);
printf(" Consider f(x,y) = (%s)\n\n",feq);
printf(" n = grad(f(x,y)) / ||grad(f(x,y))||\n\n\n");
printf(" The flux of F through S is \n\n");
printf(" // \n");
printf(" || \n");
printf(" || F.n dS = %.3f\n",m);
printf(" || \n");
printf(" // \n");
printf(" S \n\n\n");
stop();
clrscrn();
printf(" Formula : \n\n");
printf(" // \n");
printf(" || \n");
printf(" || F.n dS = %.3f\n",m);
printf(" || \n");
printf(" // \n");
printf(" S \n\n\n");
printf(" //\n");
printf(" || (n)\n");
printf(" || \n");
printf(" || F . (-f_xi-f_yj+k) dS = %.3f\n",m);
printf(" || ------------ \n");
printf(" || [f_x^2+f_y^2+1]^1/2\n");
printf(" // \n");
printf(" S \n\n\n");
stop();
clrscrn();
printf(" Formula :\n\n");
printf(" //\n");
printf(" || \n");
printf(" || F . (-f_xi-f_yj+k) dS = %.3f\n",m);
printf(" || ------------ \n");
printf(" || [f_x^2+f_y^2+1]^1/2\n");
printf(" || \n");
printf(" // \n");
printf(" S \n\n\n");
printf(" //\n");
printf(" || (F) (n) (dS)\n");
printf(" || \n");
printf(" || F . (-f_xi-f_yj+k) [f_x^2+f_y^2+1]^1/2 dA = %.3f\n",m);
printf(" || ----------- \n");
printf(" || [f_x^2+f_y^2+1]^1/2\n");
printf(" // \n ");
printf(" Rxy \n\n\n");
stop();
clrscrn();
printf(" / b / v(x)\n");
printf(" | | \n");
printf(" | | F.(-f_xi-f_yj+k) [f_x^2+f_y^2+1]^1/2 dy dx = %.3f\n",m);
printf(" | | ----------- \n");
printf(" | | [f_x^2+f_y^2+1]^1/2\n");
printf(" | | \n");
printf(" / a / u(x)\n\n\n");
printf(" With.\n\n\n");
printf(" F : (x,y,z)-> %si %sj %sk \n\n",Meq,Neq,Peq);
printf(" f : (x,y)-> %s \n\n", feq);
printf(" v : (x)-> %s \n", veq);
printf(" u : (x)-> %s \n\n", ueq);
printf(" b = %+.1f\n a = %+.1f\n\n",bx,ax);
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
L'algorithme consiste à adapter la fonction qui calcule les intégrales doubles au calcul des flux.
Remarque :
Dans cette version nous utilisons cet algorithme pour l'intégrale.
/ b / v(y)
| |
| | F.(-f_xi-f_yj+k) [f_x^2+f_y^2+1]^1/2 dx dy =
| | -----------
| | [f_x^2+f_y^2+1]^1/2
| |
/ a / u(y)
Dans la prochaine version nous utiliserons la version simplifiée.
/ b / v(y)
| |
| | F.(-f_xi-f_yj+k) dx dy =
| |
/ a / u(y)
Exemple de sortie écran :
/ b / v(x)
| |
| | F.(-f_xi-f_yj+k) [f_x^2+f_y^2+1]^1/2 dy dx = 4.712
| | -----------
| | [f_x^2+f_y^2+1]^1/2
| |
/ a / u(x)
With.
F : (x,y,z)-> xi yj zk
f : (x,y)-> 1-x**2-y**2
u : (x)-> -sqrt(1-x**2)
v : (x)-> +sqrt(1-x**2)
a = -1.0 b = +1.0
Press return to continue.