Mathc initiation/Fichiers c : c48cb
Installer et compiler ces fichiers dans votre répertoire de travail.
c02b.c |
---|
/* ---------------------------------- */
/* save as c02b.c */
/* ---------------------------------- */
#include "x_hfile.h"
#include "fa.h"
/* ---------------------------------- */
int main(void)
{
double i;
clrscrn();
printf(" The line y = a x + b (a!=0) \n\n");
printf(" is an asymptote at the curve of f at oo+ (or oo-) if :\n\n\n");
printf(" lim f(x) lim [f(x)-a*x] = b \n");
printf(" x->+oo ---- = a and x->+oo \n");
printf(" x \n\n\n");
printf(" or \n\n\n");
printf(" lim f(x) lim [f(x)-a*x] = b \n");
printf(" x->-oo ---- = a and x->-oo \n");
printf(" x \n\n\n");
stop();
clrscrn();
printf(" f : x-> %s\n\n\n", feq);
printf(" lim f(x) \n");
printf(" Compute : x->+oo ---- = a \n");
printf(" x \n\n\n");
for(i=1; i<10; i+=1)
printf(" L1(%+.0f) = %5.3f || L1(%+.0f) = %.3f\n",
i*100, f_a(i*100),
i*1000000000,f_a(i*1000000000) );
printf("\n\n");
printf(" The computation gives the impression of : a = %.3f\n\n",
f_a(i*1000000000));
stop();
return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */
Fichier de commande gnuplot :
# ---------------------
# Copy and past this file into the screen of gnuplot
#
#
set zeroaxis lt 3 lw 1
set grid
plot [-5.:5.] [-1.:10.] \
x+1.+sqrt(x*x-3.*x+2.)
reset
# ---------------------
Exemple de sortie écran :
The line y = a x + b (a!=0)
is an asymptote at the curve of f at oo+ (or oo-) if :
lim f(x) lim [f(x)-a*x] = b
x->+oo ---- = a and x->+oo
x
or
lim f(x) lim [f(x)-a*x] = b
x->-oo ---- = a and x->-oo
x
Press return to continue.
Exemple de sortie écran :
f : x-> x+1.+sqrt(x*x-3.*x+2.)
lim f(x)
Compute : x->+oo ---- = a
x
L1(+100) = 1.995 || L1(+1000000000) = 2.000
L1(+200) = 1.997 || L1(+2000000000) = 2.000
L1(+300) = 1.998 || L1(+3000000000) = 2.000
L1(+400) = 1.999 || L1(+4000000000) = 2.000
L1(+500) = 1.999 || L1(+5000000000) = 2.000
L1(+600) = 1.999 || L1(+6000000000) = 2.000
L1(+700) = 1.999 || L1(+7000000000) = 2.000
L1(+800) = 1.999 || L1(+8000000000) = 2.000
L1(+900) = 1.999 || L1(+9000000000) = 2.000
The computation gives the impression of : a = 2.000
Press return to continue.