Mathc initiation/Fichiers c : c46c1b


Sommaire


Installer et compiler ces fichiers dans votre répertoire de travail.

c181b.c
/* ---------------------------------- */
/* save as c181b.c                    */
/* ---------------------------------- */
#include "x_hfile.h"
#include      "fb.h"
/* ---------------------------------- */
int main(void)
{
 clrscrn();

 printf(" Evaluate the line integral\n\n");

 printf("    (\n" 
        " int(   f(x,y,z) ds = \n" 
        "    (C\n\n\n" 
        
        " is C has the parametrization :   \n\n" 
        " x = g(t);  y = h(t);  z = k(t);  a < t =< b \n\n\n" 
        
        "         m(t) = f(g(t), h(t), k(t)))\n\n" 
        "         n(t) = sqrt(g(t)'**2 + h(t)'**2 + k(t)'**2)\n\n\n" 
        
        "    (                (b\n" 
        " int(f(x,y,z)ds = int(    m(t) * n(t) dt \n"
        "    (C               (a\n\n");
 stop();

 clrscrn();

 printf(" Evaluate :\n\n");

 printf("    (\n");
 printf(" int(   (%s) ds = \n", feq);
 printf("    (C\n\n\n");

 printf(" is C has the parametrization :\n\n\n");
 printf(" x = %s;   y = %s;   k = %s;      %.1f < t =< %.1f \n\n\n", 
                geq, heq, keq, a, b);

 printf("    (b\n" 
        " int(  f(g(t),h(t),k(t))  sqrt(g(t)'**2 + h(t)'**2+ k(t)'**2) dt =  %+.3f\n"
        "    (a\n\n\n",  
      
         lint3d_ds(f, 
                   g,h,k,
                   a,b,LOOP));

 stop();

 return 0;
}
/* ---------------------------------- */
/* ---------------------------------- */


Évaluer l'intégrale curviligne en ds.


Exemple de sortie écran :

 Evaluate the line integral

    (
 int(   f(x,y,z) ds = 
    (C


 is C has the parametrization :   

 x = g(t);  y = h(t);  z = k(t);  a < t =< b 


         m(t) = f(g(t), h(t), k(t)))

         n(t) = sqrt(g(t)'**2 + h(t)'**2 + k(t)'**2)


    (                (b
 int(f(x,y,z)ds = int(    m(t) * n(t) dt 
    (C               (a

 Press return to continue.

Exemple de sortie écran :

 Evaluate :

    (
 int(   (cos(y*z)) ds = 
    (C


 is C has the parametrization :


 x = 3*t**2;   y = 5*t**2;   k = 2*t**2;      0.0 < t =< 1.0 


    (b
 int(  f(g(t),h(t),k(t))  sqrt(g(t)'**2 + h(t)'**2+ k(t)'**2) dt =  +1.074
    (a


 Press return to continue.