Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00c.c
/* ------------------------------------ */
/*  Save as :   c00c.c                  */
/* ------------------------------------ */
#include "w_a.h"  
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA     R4
#define   CA     C5
#define   Cb     C1
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
   +2*2,-9*2,  -5*2,-3*2,  -3*2,-8*2,  +2*2,-4*2,  -8*2,-9*2,   0,0,
   -3,  -3,    +4,  +3,    +1,  -9,    -9,  +2,    +1,  -7,     0,0, 
   +2*3,-9*3,  -5*3,-3*3,  -3*3,-8*3,  +2*3,-4*3,  -8*3,-9*3,   0,0,
   +2*7,-9*7,  -5*7,-3*7,  -3*7,-8*7,  +2*7,-4*7,  -8*7,-9*7,   0,0
};
   
double **Ab =   ca_A_mZ(ab, i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A  = c_Ab_A_mZ(Ab, i_mZ(RA,CA));
double **b  = c_Ab_b_mZ(Ab, i_mZ(RA,Cb));
double **B  =               i_mZ(RA-R2,CA);

  clrscrn();
  printf("Basis for a Row Space by Row Reduction :\n\n");
  printf(" A :");
  p_mZ(A, S3,P0, S3,P0, C8);
  printf(" b :");
  p_mZ(b, S3,P0, S3,P0, C8);
  printf(" Ab :");
  p_mZ(Ab, S3,P0, S3,P0, C8);
  stop();

  clrscrn(); 
  printf("  The nonzero rows vectors  of Ab without b\n"
         " form a basis for the row space of  A \n\n"
         " Ab :");
  printf(" gj_PP_mZ(Ab) :");
  p_mZ(gj_PP_mZ(Ab), S8,P4, S8,P4, C4);
     
  c_Ab_A_mZ(Ab,A);
  
  c_r_mZ(A,R1,B,R1);
  c_r_mZ(A,R2,B,R2);  
  
  printf(" B :  Is a basis for a Row Space of A by Row Reduction");
  p_mZ(B, S8,P4, S8,P4, C4);
  
  stop();   
  
  f_mZ(Ab);
  f_mZ(A);
  f_mZ(B);
  f_mZ(b);
}
/* ------------------------------------ */
int main(void)
{

  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.


Exemple de sortie écran :
 ------------------------------------ 
Basis for a Row Space by Row Reduction :

 A :
 +4-18i -10 -6i  -6-16i  +4 -8i -16-18i 
 -3 -3i  +4 +3i  +1 -9i  -9 +2i  +1 -7i 
 +6-27i -15 -9i  -9-24i  +6-12i -24-27i 
+14-63i -35-21i -21-56i +14-28i -56-63i 

 b :
 +0 +0i 
 +0 +0i 
 +0 +0i 
 +0 +0i 

 Ab :
 +4-18i -10 -6i  -6-16i  +4 -8i -16-18i  +0 +0i 
 -3 -3i  +4 +3i  +1 -9i  -9 +2i  +1 -7i  +0 +0i 
 +6-27i -15 -9i  -9-24i  +6-12i -24-27i  +0 +0i 
+14-63i -35-21i -21-56i +14-28i -56-63i  +0 +0i 

 Press return to continue. 


 ------------------------------------ 
  The nonzero rows vectors  of Ab without b
 form a basis for the row space of  A 

 Ab : gj_PP_mZ(Ab) :
 +1.0000 -0.0000i  +0.2000 -0.6000i  +0.7765 -0.5059i  +0.4706 +0.1176i 
 +0.0000 +0.0000i  +1.0000 +0.0000i  +0.3684 -1.3830i  -0.9965 +0.8685i 
 +0.0000 +0.0000i  +0.0000 +0.0000i  +0.0000 +0.0000i  -0.0000 -0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i  +0.0000 +0.0000i  -0.0000 -0.0000i 

 +0.7647 -1.0588i  +0.0000 +0.0000i 
 +0.6159 -1.4048i  +0.0000 +0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i 
 +0.0000 +0.0000i  +0.0000 +0.0000i 

 B :  Is a basis for a Row Space of A by Row Reduction
 +1.0000 -0.0000i  +0.2000 -0.6000i  +0.7765 -0.5059i  +0.4706 +0.1176i 
 +0.0000 +0.0000i  +1.0000 +0.0000i  +0.3684 -1.3830i  -0.9965 +0.8685i 

 +0.7647 -1.0588i 
 +0.6159 -1.4048i 

 Press return to continue.