Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00a.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "w_a.h"  
/* ------------------------------------ */
/* ------------------------------------ */
#define   RA     R3
#define   CA     C4
#define   Cb     C1
/* ------------------------------------ */
void fun(void)
{
double ab[RA*((CA+Cb)*C2)] ={
	                    1,2,  3,4,  5,6,  5,2, 0,0,
                        1,2,  3,4,  5,6,  1,3, 0,0,
                        1,2,  3,4,  1,1,  4,2, 0,0};
                          

double **Ab =   ca_A_mZ(ab, i_Abr_Ac_bc_mZ(RA,CA,Cb));
double **A  = c_Ab_A_mZ(Ab, i_mZ(RA,CA));
double **b  = c_Ab_b_mZ(Ab, i_mZ(RA,Cb));
double **B  =               i_mZ(RA,CA);

  clrscrn();
  printf("Basis for a Row Space by Row Reduction :\n\n");
  printf(" A :");
  p_mZ(A, S3,P0, S3,P0, C8);
  printf(" b :");
  p_mZ(b, S3,P0, S3,P0, C8);
  printf(" Ab :");
  p_mZ(Ab, S3,P0, S3,P0, C8);
  stop();

  clrscrn(); 
  printf("  The nonzero rows vectors  of Ab without b\n"
         " form a basis for the row space of  A \n\n"
         " Ab :");
  printf(" gj_PP_mZ(Ab) :");
  p_mZ(gj_PP_mZ(Ab), S8,P4, S8,P4, C4);
   
  printf(" B :  Is a basis for a Row Space of A by Row Reduction");
  p_mZ(c_Ab_A_mZ(Ab,B), S8,P4, S8,P4, C4);
  
  stop();   
  
  f_mZ(Ab);
  f_mZ(A);
  f_mZ(B);
  f_mZ(b);
}
/* ------------------------------------ */
int main(void)
{

  fun();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


La position des pivots de Ab donne la position des lignes de A qui forment une base pour l'espace lignes de A.


Exemple de sortie écran :
 ------------------------------------ 
Basis for a Row Space by Row Reduction :

 A :
 +1 +2i  +3 +4i  +5 +6i  +5 +2i 
 +1 +2i  +3 +4i  +5 +6i  +1 +3i 
 +1 +2i  +3 +4i  +1 +1i  +4 +2i 

 b :
 +0 +0i 
 +0 +0i 
 +0 +0i 

 Ab :
 +1 +2i  +3 +4i  +5 +6i  +5 +2i  +0 +0i 
 +1 +2i  +3 +4i  +5 +6i  +1 +3i  +0 +0i 
 +1 +2i  +3 +4i  +1 +1i  +4 +2i  +0 +0i 

 Press return to continue. 


 ------------------------------------ 
 The nonzero rows vectors  of Ab without b
 form a basis for the row space of  A 

 Ab : gj_PP_mZ(Ab) :
 +1.0000 +0.0000i  +2.2000 -0.4000i  +3.4000 -0.8000i  +1.8000 -1.6000i 
 -0.0000 +0.0000i  +0.0000 -0.0000i  +1.0000 +0.0000i  +0.0976 -0.1220i 
 +0.0000 -0.0000i  +0.0000 +0.0000i  -0.0000 +0.0000i  +1.0000 +0.0000i 

 +0.0000 +0.0000i 
 -0.0000 +0.0000i 
 +0.0000 -0.0000i 

 B :  Is a basis for a Row Space of A by Row Reduction
 +1.0000 +0.0000i  +2.2000 -0.4000i  +3.4000 -0.8000i  +1.8000 -1.6000i 
 -0.0000 +0.0000i  +0.0000 -0.0000i  +1.0000 +0.0000i  +0.0976 -0.1220i 
 +0.0000 -0.0000i  +0.0000 +0.0000i  -0.0000 +0.0000i  +1.0000 +0.0000i 

 Press return to continue.