Application


Installer et compiler ces fichiers dans votre répertoire de travail.


c00a.c
/* ------------------------------------ */
/*  Save as :   c00a.c                  */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define   RCA RC3
#define   Cb   C3
/* ------------------------------------ */
int main(void)
{
double a[RCA*(RCA*C2)] = { 1,2,  3,4,  5,6,
                           5,4,  1,3,  6,8,
                           7,2,  5,1,  1,1};

double b0[RCA*(Cb*C2)] = { 1,4, 5,4, 3,1, 
                           2,5, 3,5, 2,3,  
                           3,6, 2,6, 2,4 }; 
                         
double **A = ca_A_mZ(a, i_mZ(RCA,RCA));                        
double **B = ca_A_mZ(b0,i_mZ(RCA,Cb));       
                   
double **Inv =      i_mZ(RCA,RCA);
double **X   =      i_mZ(RCA,Cb);

  clrscrn();
  printf("                                                 \n");
  printf(" Linear systems with common coefficient matrix.\n\n");
  printf("                Ax1=b1                           \n");
  printf("                Ax2=b2                           \n");
  printf("                ...                              \n");
  printf("                Axn=bn                         \n\n");
  printf(" We can write these equalities in this maner.  \n\n");
  printf("    A|x1|x2|...|xn| = b1|b2|...|bn|            \n\n");
  printf("  or simply :                                  \n\n");
  printf("              AX = B                           \n\n");
  printf("  where B = b1|b2|...|bn                       \n\n");
  printf("  and   X = x1|x2|...|xn                       \n\n");
  stop();

  clrscrn();
  printf(" We want to find X such as,   \n\n");
  printf("         AX = B               \n\n");
  printf(" If A is a square matrix and, \n\n");
  printf(" If A has an inverse matrix,  \n\n");
  printf(" you can find X by this method\n\n");
  printf("         X = inv(A) B       \n\n\n");
  printf(" To verify the result you can \n\n");
  printf(" multiply the matrix A by X.  \n\n");
  printf(" You must refind B.  \n\n");
  stop();

  clrscrn();
  printf(" A :");
  p_mZ(A, S5,P0, S3,P0, C6);
  printf("    b1        b2        ...       bn :");
  p_mZ(B, S5,P0, S3,P0, C6);
  stop();

  clrscrn();
  printf(" invgj_mZ(A,Inv) :");
  pE_mZ(invgj_mZ(A,Inv), S12,P4, S6,P4, C3);

  printf(" X = invgj_mZ(A,Inv) * B :\n\n");
  printf("   x1                x2                ...                xn :");
  p_mZ(mul_mZ(Inv,B,X), S9,P4, S6,P4, C6);
  stop();

  clrscrn();
  printf("    b1        b2        ...       bn :");
  p_mZ(B, S5,P0, S3,P0, C6);
  printf("    Ax1       Ax2       ...       Axn :");
  p_mZ(mul_mZ(A,X,B), S5,P0, S3,P0, C6);

  f_mZ(X);
  f_mZ(B);
  f_mZ(Inv);
  f_mZ(A);
  
  stop();

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Exemple de sortie écran :
 ------------------------------------                                                                                                  
 Linear systems with common coefficient matrix.

                Ax1=b1                           
                Ax2=b2                           
                ...                              
                Axn=bn                         

 We can write these equalities in this maner.  

    A|x1|x2|...|xn| = b1|b2|...|bn|            

  or simply :                                  

              AX = B                           

  where B = b1|b2|...|bn                       

  and   X = x1|x2|...|xn                       

 Press return to continue. 


 ------------------------------------ 
 We want to find X such as,   

         AX = B               

 If A is a square matrix and, 

 If A has an inverse matrix,  

 you can find X by this method

         X = inv(A) B       


 To verify the result you can 

 multiply the matrix A by X.  

 You must refind B.  

 Press return to continue. 


 ------------------------------------ 
 A :
   +1 +2i    +3 +4i    +5 +6i 
   +5 +4i    +1 +3i    +6 +8i 
   +7 +2i    +5 +1i    +1 +1i 

    b1        b2        ...       bn :
   +1 +4i    +5 +4i    +3 +1i 
   +2 +5i    +3 +5i    +2 +3i 
   +3 +6i    +2 +6i    +2 +4i 

 Press return to continue. 


 ------------------------------------ 
 invgj_mZ(A,Inv) :
 -1.2917e-01+8.1007e-02i  +8.5597e-02-6.6602e-02i  +8.5160e-02-3.3778e-04i 
 +1.8258e-01-8.6352e-02i  -1.5122e-01+8.1911e-02i  +9.3058e-02-3.8517e-02i 
 +3.7156e-03-6.3244e-02i  +7.1142e-02-3.4463e-02i  -8.4514e-02+1.6084e-02i 

 X = invgj_mZ(A,Inv) * B :

   x1                x2                ...                xn :
  +0.3085+0.3691i   -0.2077+0.6268i   +0.0742+0.5774i 
  +0.3263+0.4945i   +0.8123+0.2695i   +0.4261-0.0711i 
  +0.2212-0.2204i   +0.3918-0.5240i   +0.0867-0.3474i 

 Press return to continue. 


 ------------------------------------ 
    b1        b2        ...       bn :
   +1 +4i    +5 +4i    +3 +1i 
   +2 +5i    +3 +5i    +2 +3i 
   +3 +6i    +2 +6i    +2 +4i 

    Ax1       Ax2       ...       Axn :
   +1 +4i    +5 +4i    +3 +1i 
   +2 +5i    +3 +5i    +2 +3i 
   +3 +6i    +2 +6i    +2 +4i 

 Press return to continue.