Mathc complexes/a192
Installer et compiler ces fichiers dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define RCA RC3
#define Cb C3
/* ------------------------------------ */
int main(void)
{
double a[RCA*(RCA*C2)] = { 1,2, 3,4, 5,6,
5,4, 1,3, 6,8,
7,2, 5,1, 1,1};
double b0[RCA*(Cb*C2)] = { 1,4, 5,4, 3,1,
2,5, 3,5, 2,3,
3,6, 2,6, 2,4 };
double **A = ca_A_mZ(a, i_mZ(RCA,RCA));
double **B = ca_A_mZ(b0,i_mZ(RCA,Cb));
double **Inv = i_mZ(RCA,RCA);
double **X = i_mZ(RCA,Cb);
clrscrn();
printf(" \n");
printf(" Linear systems with common coefficient matrix.\n\n");
printf(" Ax1=b1 \n");
printf(" Ax2=b2 \n");
printf(" ... \n");
printf(" Axn=bn \n\n");
printf(" We can write these equalities in this maner. \n\n");
printf(" A|x1|x2|...|xn| = b1|b2|...|bn| \n\n");
printf(" or simply : \n\n");
printf(" AX = B \n\n");
printf(" where B = b1|b2|...|bn \n\n");
printf(" and X = x1|x2|...|xn \n\n");
stop();
clrscrn();
printf(" We want to find X such as, \n\n");
printf(" AX = B \n\n");
printf(" If A is a square matrix and, \n\n");
printf(" If A has an inverse matrix, \n\n");
printf(" you can find X by this method\n\n");
printf(" X = inv(A) B \n\n\n");
printf(" To verify the result you can \n\n");
printf(" multiply the matrix A by X. \n\n");
printf(" You must refind B. \n\n");
stop();
clrscrn();
printf(" A :");
p_mZ(A, S5,P0, S3,P0, C6);
printf(" b1 b2 ... bn :");
p_mZ(B, S5,P0, S3,P0, C6);
stop();
clrscrn();
printf(" invgj_mZ(A,Inv) :");
pE_mZ(invgj_mZ(A,Inv), S12,P4, S6,P4, C3);
printf(" X = invgj_mZ(A,Inv) * B :\n\n");
printf(" x1 x2 ... xn :");
p_mZ(mul_mZ(Inv,B,X), S9,P4, S6,P4, C6);
stop();
clrscrn();
printf(" b1 b2 ... bn :");
p_mZ(B, S5,P0, S3,P0, C6);
printf(" Ax1 Ax2 ... Axn :");
p_mZ(mul_mZ(A,X,B), S5,P0, S3,P0, C6);
f_mZ(X);
f_mZ(B);
f_mZ(Inv);
f_mZ(A);
stop();
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Exemple de sortie écran :
------------------------------------
Linear systems with common coefficient matrix.
Ax1=b1
Ax2=b2
...
Axn=bn
We can write these equalities in this maner.
A|x1|x2|...|xn| = b1|b2|...|bn|
or simply :
AX = B
where B = b1|b2|...|bn
and X = x1|x2|...|xn
Press return to continue.
------------------------------------
We want to find X such as,
AX = B
If A is a square matrix and,
If A has an inverse matrix,
you can find X by this method
X = inv(A) B
To verify the result you can
multiply the matrix A by X.
You must refind B.
Press return to continue.
------------------------------------
A :
+1 +2i +3 +4i +5 +6i
+5 +4i +1 +3i +6 +8i
+7 +2i +5 +1i +1 +1i
b1 b2 ... bn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Press return to continue.
------------------------------------
invgj_mZ(A,Inv) :
-1.2917e-01+8.1007e-02i +8.5597e-02-6.6602e-02i +8.5160e-02-3.3778e-04i
+1.8258e-01-8.6352e-02i -1.5122e-01+8.1911e-02i +9.3058e-02-3.8517e-02i
+3.7156e-03-6.3244e-02i +7.1142e-02-3.4463e-02i -8.4514e-02+1.6084e-02i
X = invgj_mZ(A,Inv) * B :
x1 x2 ... xn :
+0.3085+0.3691i -0.2077+0.6268i +0.0742+0.5774i
+0.3263+0.4945i +0.8123+0.2695i +0.4261-0.0711i
+0.2212-0.2204i +0.3918-0.5240i +0.0867-0.3474i
Press return to continue.
------------------------------------
b1 b2 ... bn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Ax1 Ax2 ... Axn :
+1 +4i +5 +4i +3 +1i
+2 +5i +3 +5i +2 +3i
+3 +6i +2 +6i +2 +4i
Press return to continue.