Mathc complexes/Conclusion

Application

Installer et compiler ce fichier dans votre répertoire de travail.

c00a.c
/* ------------------------------------ */
/*  Save as :  c00a.c                   */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define  TAB  C2 
#define  RCA  R3 
#define  POW   2  
/* ------------------------------------ */
void fun(void)
{
double **A[TAB];
double **A_n[TAB];

double **P    =   r_mZ(  i_mZ(RCA,RCA),99); 
double **InvP = inv_mZ(P,i_mZ(RCA,RCA)   );

double **T =       i_mZ(RCA,RCA);
double **P_1A_nP = i_mZ(RCA,RCA);
int c;

  for(c=C0; c<TAB; c++)
     {   
         A[c] = i_mZ(RCA,RCA); 
       A_n[c] = i_mZ(RCA,RCA);   
	   }
	    
  rcsymmetric_mZ(A[R0],9);
  
  mul_mZ(InvP,A[C0],T); 
  mul_mZ(T,P,A[C0+C1]);

  clrscrn();
  printf(" The two similar matrices :\n\n"
         " A[%d] = P**(-1) A[%d] P   \n\n",C1,C0);
  for(c=C0; c<TAB; c++)
     {
	  printf(" A[%d] : ",c);      
      p_mZ(A[c],S9,P2,S8,P2,C6); 
     }   
  stop();    

  clrscrn();     
  printf(" The two similar matrices at the power %d : \n\n",POW);    
    for(c=C0; c<TAB; c++)
     {
	  printf(" A[%d]**%d : ",c,POW
	  );      
      p_mZ(pow_mZ(POW,A[c],A_n[c]),S11,P2,S11,P2,C6); 
     } 
  stop();    

  clrscrn();     
  mul_mZ(InvP,A_n[C0],T); 
  mul_mZ(T,P,P_1A_nP);
     
  printf(" A[%d]**%d = P**(-1) A[%d]**%d P \n\n",C1,POW,C0,POW); 
  printf(" A[%d]**%d : ",C1,POW);      
  p_mZ(A_n[1],S11,P2,S11,P2,C6); 
  printf(" P**(-1) A[%d]**%d P : ",C0,POW);      
  p_mZ(P_1A_nP,S11,P2,S11,P2,C6); 



  for(c=C0; c<TAB; c++)
     { 
	   f_mZ(A[c]);
	   f_mZ(A_n[c]);
	   }
	   
  f_mZ(P);		 
  f_mZ(InvP); 	   
  f_mZ(T); 
  f_mZ(P_1A_nP);       
}
/* ------------------------------------ */
int main(void)
{
time_t t;

  srand(time(&t));
  
  do{
        fun();
        
  }while(stop_w());

  return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */


Je crée une suite de deux Matrices semblables.


Exemple de sortie écran :

 -------------------------------------------
 The two similar matrices :

 A[1] = P**(-1) A[0] P   

 A[0] : 
  +179.00   +0.00i    -36.00  -58.00i     +9.00  +16.00i 
   -36.00  +58.00i   +253.00   +0.00i    -63.00   -1.00i 
    +9.00  -16.00i    -63.00   +1.00i   +163.00   +0.00i 

 A[1] : 
  +190.18  -40.84i    -39.48 +102.41i   +121.09  -90.71i 
    +6.44   +4.28i   +138.58  -20.05i     +4.29  +44.42i 
   +65.17  +40.06i   -115.37   +6.75i   +266.23  +60.89i 

 Press return to continue. 


 -------------------------------------------
 The two similar matrices at the power 2 : 

 A[0]**2 : 
  +37038.00      +0.00i   -16135.00  -26055.00i    +5288.00   +9162.00i 
  -16135.00  +26055.00i   +72639.00      +0.00i   -27460.00    -470.00i 
   +5288.00   -9162.00i   -27460.00    +470.00i   +30876.00      +0.00i 

 A[1]**2 : 
  +45334.87  -16104.16i   -20100.86  +47357.34i   +52366.33  -40287.38i 
    +879.23   +4080.04i   +17315.57  -10160.94i    +1091.79  +18090.15i 
  +28168.67  +19141.55i   -53656.45   +3114.31i   +77902.56  +26265.10i 

 Press return to continue. 


 -------------------------------------------
 A[1]**2 = P**(-1) A[0]**2 P 

 A[1]**2 : 
  +45334.87  -16104.16i   -20100.86  +47357.34i   +52366.33  -40287.38i 
    +879.23   +4080.04i   +17315.57  -10160.94i    +1091.79  +18090.15i 
  +28168.67  +19141.55i   -53656.45   +3114.31i   +77902.56  +26265.10i 

 P**(-1) A[0]**2 P : 
  +45334.87  -16104.16i   -20100.86  +47357.34i   +52366.33  -40287.38i 
    +879.23   +4080.04i   +17315.57  -10160.94i    +1091.79  +18090.15i 
  +28168.67  +19141.55i   -53656.45   +3114.31i   +77902.56  +26265.10i 


 Press   return to continue
 Press X return to stop