Mathc complexes/01a
Installer et compiler ce fichier dans votre répertoire de travail.
c00a.c |
---|
/* ------------------------------------ */
/* Save as : c00a.c */
/* ------------------------------------ */
#include "w_a.h"
/* ------------------------------------ */
#define FACTOR_E +1.E-2
#define RCA RC3
/* ------------------------------------ */
/* ------------------------------------ */
void fun(void)
{
double **A = i_mZ(RCA,RCA);
double **V = i_mZ(RCA,RCA);
double **invV = i_mZ(RCA,RCA);
double **T = i_mZ(RCA,RCA);
double **EigsValue = i_mZ(RCA,RCA);
do
{
rdiag_mZ(A,99);
eigs_V_mZ(A,V,FACTOR_E);
}while((det_Z(V).r && det_Z(V).i));
clrscrn();
printf(" Copy/Past into the octave windows \n\n\n");
p_Octave_mZ(A,"a",P0,P0);
printf(" [V, E] = eigs (a,%d) \n\n\n",RCA);
printf(" V :");
pE_mZ(V, S12,P4, S12,P4, C3);
printf(" inv(V) ... Some time the matrix is not invertible :");
pE_mZ(invgj_mZ(V,invV), S12,P4, S12,P4, C3);
stop();
clrscrn();
printf(" A :");
p_mZ(A, S12,P4, S12,P4, C3);
printf(" EigsValue = invV * A * V");
mul_mZ(invV,A,T);
mul_mZ(T,V,EigsValue);
pE_mZ(clean_eyes_mZ(EigsValue), S12,P4, S8,P4, C3);
printf(" A = V * EigsValue * invV");
mul_mZ(V,EigsValue,T);
mul_mZ(T,invV,A);
p_mZ(A, S12,P4, S12,P4, C3);
f_mZ(A);
f_mZ(V);
f_mZ(invV);
f_mZ(T);
f_mZ(EigsValue);
}
/* ------------------------------------ */
int main(void)
{
time_t t;
srand(time(&t));
do
{
fun();
} while(stop_w());
return 0;
}
/* ------------------------------------ */
/* ------------------------------------ */
Valeurs propres vecteurs propres d'une matrice diagonale.
Remarque :
- Je n'ai pas les même vecteurs propres que octave.
- Mais je parviens cependant à calculer les valeurs propres (EigsValue = invV * A * V), et a retrouver la matrice A (A = V * EigsValue * invV).
Exemple de sortie écran :
Copy/Past into the octave windows
a=[
+4-54*i,+0+0*i,+0+0*i;
+0+0*i,-95+92*i,+0+0*i;
+0+0*i,+0+0*i,+51+14*i]
[V, E] = eigs (a,3)
V :
+1.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i
+0.0000e+00 +0.0000e+00i +1.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i
+0.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i +1.0000e+00 +0.0000e+00i
inv(V) ... Some time the matrix is not invertible :
+1.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i
+0.0000e+00 +0.0000e+00i +1.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i
+0.0000e+00 +0.0000e+00i +0.0000e+00 +0.0000e+00i +1.0000e+00 +0.0000e+00i
Press return to continue.
A :
+4.0000 -54.0000i +0.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i -95.0000 +92.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i +51.0000 +14.0000i
EigsValue = invV * A * V
+4.0000e+00-5.4000e+01i +0.0000e+00+0.0000e+00i +0.0000e+00+0.0000e+00i
+0.0000e+00+0.0000e+00i -9.5000e+01+9.2000e+01i +0.0000e+00+0.0000e+00i
+0.0000e+00+0.0000e+00i +0.0000e+00+0.0000e+00i +5.1000e+01+1.4000e+01i
A = V * EigsValue * invV
+4.0000 -54.0000i +0.0000 +0.0000i +0.0000 +0.0000i
+0.0000 +0.0000i -95.0000 +92.0000i +0.0000 +0.0000i
+0.0000 +0.0000i +0.0000 +0.0000i +51.0000 +14.0000i
Press return to continue
Press X return to stop