Formulaire de relativité restreinte
Les notations
modifierLes formules établissent le passage entre les coordonnées (t, x ) d'un événement dans le repère inertiel fixe, disons celui de la Terre, et les coordonnées (t ’, x ’ ) du même événement dans le repère mobile, disons de la fusée, laquelle se déplace le long de l'axe des x avec la vitesse v.
On suppose que les origines du temps coïncident à
On pose :
Le paramètre angulaire
modifierPour simplifier les formules il est utile d'introduire le paramètre angulaire défini par les formules suivantes :
- soit
À l'aide de ce paramètre on peut écrire :
L'invariant de la relativité restreinte
modifierLa quantité suivante est invariante dans un changement de coordonnées
et définit le temps propre
En utilisant les fonctions hyperboliques de l'angle θ, on a :
En sens inverse
ou
Si l'horloge de la fusée mesure la durée entre deux événements se produisant dans cette fusée, donc séparés par une distance spatiale , la durée mesurée dans le laboratoire fixe de la Terre est
La durée mesurée dans un repère extérieur est toujours plus grande que la durée propre.
Si la fusée est de longueur L’ dans son propre repère, sa longueur L mesurée par la distance entre les deux points de la Terre en coïncidence avec l'avant et l'arrière de la fusée au même instant (sur Terre), donc correspondant à , est donnée par
La longueur mesurée sur Terre est plus petite que la longueur propre de la fusée.
Un obus est tiré dans la fusée avec une vitesse w ’ par rapport au repère de cette fusée, dans la direction du mouvement. La vitesse w de l'obus par rapport à la Terre est
En utilisant les paramètres angulaires
on a
Comme
on a
Aux faibles vitesses
On a toujours la relation
La quantité suivante est invariante dans un changement de repère
Pour un photon, m = 0 et
Énergie cinétique
modifierL'énergie cinétique d'une particule est
Pour
et pour
Formules de changement de repère
modifierCe sont les formules de Lorentz
ou
Transformations inverses
Le voyage dans le futur des autres
modifier
On considère R' le référentiel du voyageur A qui se déplace à 3/5 c ce qui donne une dilatation du temps de
- Si T0 est la durée du voyage dans R', dans R le voyage aller a duré T1 = γT0 = 5/4 années, en parcourant vγT0= 3/5 × 5/4 T0 année-lumière= 3/4 T0 a.l.
(a.l. signifie année lumière ou distance parcourue par la lumière en un an )
- Pour simplifier prenons un voyage de T0 = 1 an et pour moderniser le voyage, O et O' sont sous vidéo avec émission en continu.
- Par effet Doppler, les émissions sont reçues au ralenti avec un facteur (1+v/c) = 8/5 qui combiné avec la dilatation du temps 5/4 donne
Il faut donc à chacun, et la situation est symétrique pour B en O et A en O', le double de temps pour visionner en « direct » la vie de l'autre tant que ni l'un ni l'autre ne modifie son mouvement.
- Supposons que A s'arrête au bout d'un an, sans revenir.
- Point de vue de A : Il a reçu 6 mois de la vie de B au ralenti en un an de son trajet et recevra la suite de vie de B avec un retard de 3/4 d'an à un rythme normal. La dernière minute des six mois de la vie de B, visionnée au ralenti par A, a été émise 3/4 d'an plus tôt : A sait donc que B a vécu 5/4 d'année depuis son départ, ce qui est bien la durée T1 du voyage de A dans le référentiel de B.
- Point de vue de B : Après avoir reçu au ralenti le voyage aller de A en 2 ans, B reçoit la vie de A avec un retard de 3/4 d'an à un rythme normal. La dernière minute du voyage de A, visionnée au ralenti par B, a été émise 3/4 d'an plus tôt : B sait donc que le voyage de A a duré (dans le référentiel de B) 2 ans moins 3/4 année, soit 5/4 d'année, ce qui est bien la durée T1 du voyage de A dans le référentiel de B.
- Supposons maintenant que A en O' fasse demi tour au bout d'un an temps propre pour lui :
- Point de vue de A : Il n'a alors visionné que 6 mois de la vie de B situé en O et il lui reste à recevoir ce qui est sur les 3/4 a.l qui séparent O de O', soit 3/4 ans du vécu de B en O non visionné par A situé en O', auquel il faudra ajouter la durée de vie de B pendant le voyage retour de A, soit T1 = 5/4 ans de la vie de B. A recevra donc en accéléré, en un an de son voyage retour, 2 ans de vie de B en O, ce qui est bien conforme à une réception en accéléré due au fait que le voyage retour rapproche A et O. En effet :
- A a donc voyagé pendant 2 ans et se retrouve avec B en O qui a vécu 6 mois + 2 ans = 2 ans et demi = 2T1.
- C'est l'effet dilatation du temps.
- Noter que A a fait demi tour dans un espace contenant des ondes qui se propagent vers B en O.
- Point de vue de B : En O, il reçoit pendant 2 ans le voyage aller de A en O' et lorsque A fait demi-tour, il ne le sait pas encore. Lorsqu'il reçoit l'information que A en O' a fait demi tour il y a déjà 3/4 d'an que A voyage sur le retour et A sera dans 6 mois en O : B en O reçoit ce retour d'un an de la vie de A en accéléré en ces 6 mois. B aura mis 2 ans et 6 mois pour recevoir les « 2ans » de voyage de A.
Pour bien percevoir l'effet relativiste, il faut voir ce que donnerait le formalisme classique.
- En ce qui concerne les messages émis de B vers A, A les perçoit à l'aller en ralenti avec le facteur , et au retour en accéléré avec le facteur , sans le facteur spécifiquement relativiste de dilatation du temps . La longueur du trajet de A est 3cT0/5, soit 3/5 a.l. (nous gardons les mêmes unités même si elles ne sont plus vraisemblables pour faciliter la comparaison).
- En ce qui concerne les messages émis de A vers B, B les perçoit à l'aller de A en ralenti avec le facteur , et au retour de A en accéléré avec le facteur .
- Point de vue de A : Pendant le voyage aller d'un an pour B, A reçoit au ralenti la vie de B avec un facteur 1 - 3/5, soit 2/5 de la vie de B. Au retour, A reçoit en accéléré la vie de B avec un facteur 1 + 3/5, soit 8/5 de la vie de B. Au cours de ses deux ans de voyage, A a visionné 2/5 + 8/5 = 2 années de la vie de B.
- Point de vue de B : B reçoit au ralenti une année de voyage de A, avec un facteur 1/(1 + 3/5)) = 5/8. A cet instant, A fait demi-tour, mais B ne le sait pas encore. Il le saura lorsque le signal émis par A lui parviendra, c’est-à-dire dans 3/5 d'année. B verra donc s'écouler 1 + 3/5 = 8/5 d'années pour visionner la totalité du voyage de A avant de le voir faire demi-tour. Ces 8/5 d'années correspondent bien à un an de la vie de A visionnée au ralenti avec un facteur 5/8. Lorsque B voit A faire demi-tour, A est déjà sur le chemin du retour depuis 3/5 d'année. Il lui reste donc 2/5 d'année à voyager. B, quant à lui, visionnera en accéléré la totalité du voyage retour avec un facteur 1/(1 - 3/5)) = 5/2. Ce visionnage du retour durera donc également 2/5 d'année, et B aura visionné 8/5 + 2/5 = 2 années de voyage de A.
L'aller et le retour de A ont duré chacun 1 an, A a vécu 2 ans. Et B a vécu 2 ans pour visionner les 2 ans du voyage de A : classique quoi ! Le temps est le même pour A et B : universel.