Fonctionnement d'un ordinateur/Les processeurs de traitement du signal
Les DSP, les processeurs de traitement du signal, sont des jeux d'instructions spécialement conçus pour travailler sur du son, de la vidéo, des images… Le jeu d'instruction d'un DSP est assez spécial, que ce soit pour le nombre de registres, leur utilisation, ou la présence d'instructions insolites.
Les registres des DSP
modifierPour des raisons de couts, tous les DSP utilisent un faible nombre de registres spécialisés. Un DSP a souvent des registres entiers séparés des registres flottants, ainsi que des registres spécialisés pour les adresses mémoires. On peut aussi trouver des registres spécialisés pour les indices de tableau ou les compteurs de boucle. Cette spécialisation des registres pose de nombreux problèmes pour les compilateurs, qui peuvent donner lieu à une génération de code sous-optimale.
De nombreuses applications de traitement du signal ayant besoin d'une grande précision, les DSP sont dotés de registres accumulateurs très grands, capables de retenir des résultats de calcul intermédiaires sans perte de précision.
De plus, certaines instructions et certains modes d'adressage ne sont utilisables que sur certains types de registres. Certaines instructions d'accès mémoire peuvent prendre comme destination ou comme opérande un nombre limité de registres, les autres leur étant interdits. Cela permet de diminuer le nombre de bits nécessaire pour encoder l'instruction en binaire.
Les instructions courantes des DSP
modifierLes DSP utilisent souvent l'arithmétique saturée. Certains permettent d'activer et de désactiver l'arithmétique saturée, en modifiant un registre de configuration du processeur. D'autres fournissent chaque instruction de calcul en double : une en arithmétique modulaire, l'autre en arithmétique saturée. Les DSP fournissent l'instruction multiply and accumulate (MAC) ou fused multiply and accumulate (FMAC), qui effectuent une multiplication et une addition en un seul cycle d'horloge, ce calcul étant très courant dans les algorithmes de traitement de signal. Il n'est pas rare que l'instruction MAC soit pipelinée.
Pour accélérer les boucles for, les DSP ont des instructions qui effectuent un test, un branchement et une mise à jour de l'indice en un cycle d’horloge. Cet indice est placé dans des registres uniquement dédiés aux compteurs de boucles. Autre fonctionnalité : les instructions autorépétées, des instructions qui se répètent automatiquement tant qu'une certaine condition n'est pas remplie. L'instruction effectue le test, le branchement, et l’exécution de l'instruction proprement dite en un cycle d'horloge. Cela permet de gérer des boucles dont le corps se limite à une seule instruction. Cette fonctionnalité a parfois été améliorée en permettant d'effectuer cette répétition sur des suites d'instructions.
Les DSP sont capables d'effectuer plusieurs accès mémoires simultanés par cycle, en parallèle. Par exemple, certains permettent de charger toutes leurs opérandes d'un calcul depuis la mémoire en même temps, et éventuellement d'écrire le résultat en mémoire lors du même cycle. Il existe aussi des instructions d'accès mémoires, séparées des instructions arithmétiques et logiques, capable de faire plusieurs accès mémoire par cycles : ce sont des déplacements parallèles (parallel moves). Notons qu'il faut que la mémoire soit multiport pour gérer plusieurs accès par cycle. Un DSP ne possède généralement pas de cache pour les données, mais conserve parfois un cache d'instructions pour accélérer l’exécution des boucles. Au passage, les DSP sont basés sur une architecture Harvard, ce qui permet au processeur de charger une instruction en même temps que ses opérandes.
Les modes d’adressage sur les DSP
modifierLes DSP incorporent pas mal de modes d'adressages spécialisés. Par exemple, beaucoup implémentent l'adressage indirect à registre avec post- ou préincrément/décrément, que nous avions vu dans le chapitre sur l'encodage des instructions. Mais il en existe d'autres qu'on ne retrouve que sur les DSP et pas ailleurs. Il s'agit de l'adressage modulo et de l'adressage à bits inversés.
L'adressage « modulo »
modifierLes DSP implémentent des modes d'adressages servant à faciliter l’utilisation de files, des zones de mémoire où l’on stocke des données dans un certain ordre. On peut y ajouter de nouvelles données, et en retirer, mais les retraits et ajouts ne peuvent pas se faire n'importe comment : quand on retire une donnée, c'est la donnée la plus ancienne qui quitte la file. Tout se passe comme si ces données étaient rangées dans l'ordre en mémoire.
Ces files sont implémentées avec un tableau, auquel on ajoute deux adresses mémoires : une pour le début de la file et l'autre pour la fin. Le début de la file correspond à l'endroit où l'on insère les nouvelles données. La fin de la file correspond à la donnée la plus ancienne en mémoire. À chaque ajout de donnée, on doit mettre à jour l'adresse de début de file. Lors d'une suppression, c'est l'adresse de fin de file qui doit être mise à jour. Ce tableau a une taille fixe. Si jamais celui-ci se remplit jusqu'à la dernière case, (ici la cinquième), il se peut malgré tout qu'il reste de la place au début du tableau : des retraits de données ont libéré de la place. L'insertion continue alors au tout début du tableau. Cela demande de vérifier si l'on a atteint la fin du tableau à chaque insertion. De plus, en cas de débordement, si l'on arrive à la fin du tableau, l'adresse de la donnée la plus récemment ajoutée doit être remise à la bonne valeur : celle pointant sur le début du tableau. Tout cela fait pas mal de travail.
Le mode d'adressage « modulo » a été inventé pour faciliter la gestion des débordements. Avec ce mode d'adressage, l'incrémentation de l'adresse au retrait ou à l'ajout est donc effectué automatiquement. De plus, ce mode d'adressage vérifie automatiquement que l'adresse ne déborde pas du tableau. Et enfin, si cette adresse déborde, elle est mise à jour pour pointer au début du tableau. Suivant le DSP, ce mode d'adressage est géré plus ou moins différemment. La première méthode utilise des registres « modulo », qui stockent la taille du tableau. Chaque registre est associé à un registre d'adresse pour l'adresse/indice de l’élément en cours. Vu que seule la taille du tableau est mémorisée, le processeur ne sait pas quelle est l'adresse de début du tableau, et doit donc ruser. Cette adresse est souvent alignée sur un multiple de 64, 128, ou 256. Cela permet ainsi de déduire l'adresse de début de la file : c'est le multiple de 64, 128, 256 strictement inférieur le plus proche de l'adresse manipulée. Autre solution : utiliser deux registres, un pour stocker l'adresse de début du tableau et un autre pour sa longueur. Et enfin, dernière solution, utiliser un registre pour stocker l'adresse de début, et un autre pour l'adresse de fin.
L'adressage à bits inversés
modifierL'adressage à bits inversés (bit-reverse) a été inventé pour accélérer les algorithmes de calcul de transformée de Fourier (un « calcul » très courant en traitement du signal). Cet algorithme va prendre des données dans un tableau, et va fournir des résultats dans un autre tableau. Seul problème, l'ordre d'arrivée des résultats dans le tableau d'arrivée est assez spécial. Par exemple, pour un tableau de 8 cases, les données arrivent dans cet ordre : 0, 4, 2, 6, 1, 5, 3, 7. L'ordre semble être totalement aléatoire. Mais il n'en est rien : regardons ces nombres une fois écrits en binaire, et comparons-les à l'ordre normal : 0, 1, 2, 3, 4, 5, 6, 7.
Ordre normal | Ordre Fourier |
---|---|
000 | 000 |
001 | 100 |
010 | 010 |
011 | 110 |
100 | 001 |
101 | 101 |
110 | 011 |
111 | 111 |
Comme vous le voyez, les bits de l'adresse Fourier sont inversés comparés aux bits de l'adresse normale. Nos DSP disposent donc d'un mode d’adressage qui inverse tout ou partie des bits d'une adresse mémoire, afin de gérer plus facilement les algorithmes de calcul de transformées de Fourier. Une autre technique consiste à calculer nos adresses différemment. Il suffit, lorsqu'on ajoute un indice à notre adresse, de renverser la direction de propagation de la retenue lors de l’exécution de l'addition. Certains DSP disposent d'instructions pour faire ce genre de calculs.