Fonctionnement d'un ordinateur/Les circuits synchrones et asynchrones
Les bascules sont rarement utilisées seules. Elles sont combinées avec des circuits combinatoires pour former des circuits qui possèdent une capacité de mémorisation, appelés circuits séquentiels. L'ensemble des informations mémorisées dans un circuit séquentiel, le contenu de ses bascules, forme ce qu'on appelle l'état du circuit, aussi appelé la mémoire du circuit séquentiel. Un circuit séquentiel peut ainsi être découpé en deux morceaux : des bascules qui stockent l'état du circuit, et des circuits combinatoires pour mettre à jour l'état du circuit et sa sortie. Suivant la méthode utilisée pour déterminer la sortie, on peut classer les circuits séquentiels en deux catégories :
- les automates de Moore, où la sortie ne dépend que de l'état mémorisé ;
- et les automates de Mealy, où la sortie dépend de l'état du circuit et de ses entrées.
- Ces derniers ont tendance à utiliser moins de portes logiques que les automates de Moore.

Concevoir des circuits séquentiels demande d'utiliser un formalisme assez complexe et des outils comme des machines à état finis (finite state machine). Mais nous ne parlerons pas de cela dans ce cours, car nous n'aurons heureusement pas à les utiliser.
La majorité des circuits séquentiels possèdent plusieurs bascules, dont certaines doivent être synchronisées entre elles. Sauf qu'un léger détail vient mettre son grain de sel : tous les circuits combinatoires ne vont pas à la même vitesse ! Si on change l'entrée d'un circuit combinatoire, cela se répercutera sur ses sorties. Mais toutes les sorties ne sont pas mises en même temps et certaines sorties seront mises à jour avant les autres ! Cela ne pose pas de problèmes avec un circuit combinatoire, mais ce n'est pas le cas si une boucle est impliquée, comme dans les circuits séquentiels. Si les sorties sont renvoyées sur les entrées, alors le résultat sur l'entrée sera un mix entre certaines sorties en avance et certaines sorties non-mises à jour. Le circuit combinatoire donnera alors un résultat erroné en sortie. Certes, la présence de l'entrée Enable permet de limiter ce problème, mais rien ne garantit qu'elle soit mise à jour au bon moment. En conséquence, les bascules ne sont pas mises à jour en même temps, ce qui pose quelques problèmes relativement fâcheux si aucune mesure n'est prise.
Le temps de propagationModifier
Pour commencer, il nous faut expliquer pourquoi tous les circuits combinatoires ne vont pas à la même vitesse. Tout circuit, quel qu'il soit, va mettre un petit peu de temps avant de réagir. Ce temps mis par le circuit pour propager un changement sur les entrées vers la sortie s'appelle le temps de propagation. Pour faire simple, c'est le temps que met un circuit à faire ce qu'on lui demande : plus ce temps de propagation est élevé, plus le circuit est lent. Ce temps de propagation dépend de pas mal de paramètres, aussi je ne vais citer que les principaux.
Le temps de propagation des portes logiquesModifier
Une porte logique n'est pas un système parfait et reste soumis aux lois de la physique. Notamment, il n'a pas une évolution instantanée et met toujours un petit peu de temps avant de changer d'état. Quand un bit à l'entrée d'une porte logique change, elle met du temps avant de changer sa sortie. Ce temps de réaction pour propager un changement fait sur les entrées vers la sortie s'appelle le temps de propagation de la porte logique. Pour être plus précis, il existe deux temps de propagation : un temps pour passer la sortie de 0 à 1, et un temps pour la passer de 1 à 0. Les électroniciens utilisent souvent la moyenne entre ces deux temps de propagation, et la nomment le retard de propagation, noté .
Le chemin critiqueModifier
Si le temps de propagation de chaque porte logique a son importance, il faut aussi tenir compte de la manière dont elles sont reliées. La relation entre "temps de propagation d'un circuit" et "temps de propagation de ses portes" n'est pas simple. Deux paramètres vont venir jouer les trouble-fêtes : le chemin critique et la sortance des portes logiques. Commençons par voir le chemin critique, qui n'est autre que le nombre maximal de portes logiques entre une entrée et une sortie de notre circuit. Pour donner un exemple, nous allons prendre le schéma ci-contre. Pour ce circuit, le chemin critique est dessiné en rouge. En suivant ce chemin, on va traverser trois portes logiques, contre deux ou une dans les autres chemins.
Le temps de propagation total, lié au chemin critique, se calcule à partie de plusieurs paramètres. Premièrement, il faut déterminer quel est le temps de propagation pour chaque porte logique du circuit. En effet, chaque porte logique met un certain temps avant de fournir son résultat en sortie : quand les entrées sont modifiées, il faut un peu de temps pour que sa sortie change. Ensuite, pour chaque porte, il faut ajouter le temps de propagation des portes qui précédent. Si plusieurs portes sont reliées sur les entrées, on prend le temps le plus élevé. Enfin, il faut identifier le chemin critique, le plus long : le temps de propagation de ce chemin est le temps qui donne le tempo maximal du circuit.
La sortance des portes logiquesModifier
Passons maintenant au second paramètre lié à l'interconnexion entre portes logiques : la sortance. Dans les circuits complexes, il n'est pas rare que la sortie d'une porte logique soit reliée à plusieurs entrées (d'autre portes logiques). Le nombre d'entrées connectées à une sortie est appelé la sortance de la sortie. Il se trouve que plus on connecte de portes logiques sur une sortie, (plus sa sortance est élevée), plus il faudra du temps pour que la tension à l'entrée de ces portes passe de 1 à 0 (ou inversement). La raison en est que la porte logique fournit un courant fixe sur sa sortie, qui charge les entrées en tension électrique. Un courant positif assez fort charge les entrées à 1, alors qu'un courant nul ne charge pas les entrées qui retombent à 0. Avec plusieurs entrées, la répartition est approximativement équitable et chaque entrée reçoit seulement une partie du courant de sortie. Elles mettent plus de temps à se remplir de charges, ce qui fait que la tension met plus de temps à monter jusqu'à 1.
Le temps de latence des filsModifier
Enfin, il faut tenir compte du temps de propagation dans les fils, celui mis par notre tension pour se propager dans les fils qui relient les portes logiques entre elles. Ce temps perdu dans les fils devient de plus en plus important au cours du temps, les transistors et portes logiques devenant de plus en plus rapides à force de les miniaturiser. Par exemple, si vous comptez créer un circuit avec des entrées de 256 à 512 bits, il vaut mieux le modifier pour minimiser le temps perdu dans les interconnexions que de diminuer le chemin critique.
Les circuits synchrones et asynchronesModifier
Sur les circuits purement combinatoires, le temps de propagation n'est que rarement un souci, à moins de rencontrer des soucis de métastabilité assez compliqués. Par contre, le temps de propagation doit être pris en compte quand on crée un circuit séquentiel : sans ça on ne sait pas quand mettre à jour les bascules du circuit. Si on le fait trop tôt, le circuit combinatoire peut sauter des états : il se peut parfaitement qu'on change le bit placé sur l'entrée avant qu'il ne soit mémorisé. De plus, les différents circuits d'un composant électronique n'ont pas tous le même temps de propagation, et ceux-ci vont fonctionner à des vitesses différentes. Si l'on ne fait rien, on peut se retrouver avec des dysfonctionnements : par exemple, un circuit lent peut rater deux ou trois nombres envoyés par un composant un peu trop rapide.
Pour éviter les ennuis dus à l'existence de ce temps de propagation, il existe deux grandes solutions, qui permettent de faire la différence entre circuits asynchrones et synchrones. Les circuits asynchrones préviennent les bascules quand ils veulent la mettre à jour. Quand le circuit combinatoire et les bascules sont tous les deux prêts, on autorise l'écriture dans les bascules. Mais ce n'est pas cette solution qui est utilisée dans les circuits de nos ordinateurs, qui sont des circuits synchrones. Dans les circuits synchrones, les bascules sont mises à jour en même temps.
Les circuits synchronesModifier
Les circuits synchrones mettent à jour leurs bascules à intervalles réguliers. La durée entre deux mises à jour est constante et doit être plus grande que le temps de propagation le plus long du circuit : on se cale donc sur le circuit combinatoire le plus lent. Les concepteurs d'un circuit doivent estimer le pire temps de propagation possible pour le circuit et ajouter une marge de sûreté. Pour mettre à jour les circuits à intervalles réguliers, le signal d'autorisation d'écriture est une tension qui varie de façon cyclique : on parle alors de signal d'horloge. Le temps que met la tension pour effectuer un cycle est ce qu'on appelle la période. Le nombre de périodes par seconde est appelé la fréquence. Elle se mesure en hertz. On voit sur ce schéma que la tension ne peut pas varier instantanément : elle met un certain temps pour passer de 0 à 1 et de 1 à 0. On appelle cela un front. Le passage de 0 à 1 est appelé un front montant et le passage de 1 à 0 un front descendant.
En faisant cela, le circuit mettra ses sorties à jour lors d'un front montant (ou descendant) sur son entrée d'horloge. Entre deux fronts montants (ou descendants), le circuit ne réagit pas aux variations des entrées. Rappelons que seuls les circuits séquentiels doivent être synchronisés ainsi, les circuits combinatoires étant épargnés par les problématiques de synchronisation. Pour que les circuits séquentiels soient cadencés par une horloge, les bascules du circuit sont modifiées de manière à réagir aux fronts montants et/ou aux fronts descendants, ce qui fait que la mise à jour de l'état interne du circuit est synchronisée sur l'horloge. Évidemment, l’horloge est envoyée au circuit via une entrée spéciale : l'entrée d'horloge. L'horloge est ensuite distribuée à l'intérieur du composant, jusqu'aux bascules, par un ensemble de connexions qui relient l'entrée d'horloge aux bascules.
En théorie, plus un composant utilise une fréquence élevée, plus il est rapide. C'est assez intuitif : plus un composant peut changer d'état un grand nombre de fois par seconde, plus, il peut faire de calculs, et plus il est performant. Cela n'est toutefois pas un élément déterminant : un processeur de 4 gigahertz peut être bien plus rapide qu'un processeur de 200 gigahertz, pour des raisons techniques qu'on verra plus tard dans ce cours. Mais dans les grandes lignes, une hausse de la fréquence signifie une performance plus élevée. Les processeurs et mémoires ont vu leur fréquence augmenter au fil du temps, ce qui explique en partie pourquoi leur performance a augmenté au cours du temps. Pour donner un ordre de grandeur, le premier microprocesseur avait une fréquence de 740 kilohertz (740 000 hertz), alors que les processeurs actuels montent jusqu'à plusieurs gigahertz : plusieurs milliards de fronts par secondes ! Mais cela a eu pour défaut d'augmenter la consommation d'énergie des processeurs, et la chaleur qu'ils émettent. Car, comme on le verra dans plusieurs chapitres, un composant chauffe d'autant plus qu'il a une fréquence élevée. Les premiers processeurs étaient refroidis par un simple radiateur, alors que les processeurs modernes demandent un radiateur, un ventilateur et une pâte thermique de qualité pour dissiper leur chaleur. Pour limiter la catastrophe, les fabricants de processeurs ont inventé diverses techniques permettant de diminuer la consommation énergétique et la dissipation thermique d'un processeur, mais cela est un sujet pour un autre chapitre. Toujours est-il que l'augmentation en fréquence des processeurs modernes est de plus en plus contrainte par la dissipation de chaleur et la consommation d'énergie.
Dans un ordinateur moderne, chaque composant a sa propre horloge, qui peut être plus ou moins rapide que les autres. Par exemple, le processeur fonctionne avec une horloge différente de l'horloge de la mémoire RAM ou des périphériques. La présence de plusieurs horloges vient du fait que certains composants sont plus lents que d'autres. Plutôt que de caler tous les composants d'un ordinateur sur le plus lent en utilisant une seule horloge, il vaut mieux utiliser une horloge différente pour chaque composant : les mises à jour des circuits sont synchronisées à l'intérieur d'un composant (dans un processeur, ou une mémoire), alors que les composants eux-mêmes synchronisent leurs communications avec d'autres mécanismes. Ces multiples signaux d'horloge dérivent d'une horloge de base qui est « transformée » en plusieurs horloges, grâce à des montages électroniques spécialisés (des PLL ou des montages à portes logiques un peu particuliers).
Les circuits asynchronesModifier
Les circuits asynchrones n'utilisent pas d'horloge pour synchroniser leurs composants/sous-circuits. L’asynchrone permet à deux circuits/composants de se synchroniser, l'un des deux étant un émetteur, l'autre étant un récepteur. Pour se synchroniser, l’émetteur indique au récepteur qu'il lui a envoyé une donnée. Le récepteur réceptionne alors la donnée et indique qu'il a pris en compte les données envoyées. Cette synchronisation se fait grâce à des fils spécialisés du bus de commande, qui transmettent des bits particuliers.
La transmission des données/requêtes peut se faire de deux manières différentes : la première utilise un signal de requête qui indique que de nouvelles données sont disponibles, la seconde n'envoie que des données dupliquées. Ces deux méthodes portent les noms de Bundled Encoding et de Multi-Rail Encoding. La première est la plus intuitive, car elle correspond à l'encodage des bits que nous utilisons depuis le début de ce cours, alors que la seconde est inédite à ce point du cours.
Le Bundled EncodingModifier
Avec la méthode du Bundled Encoding, aussi appelée codage simple-track, la synchronisation utilise deux fils : REQ et ACK (des mots anglais request =demande et acknowledg(e)ment =accusé de réception). Le fil REQ indique au récepteur que l'émetteur lui a envoyé une donnée, tandis que le fil ACK indique que le récepteur a fini son travail et a accepté la donnée entrante. Plus rarement, un seul fil est utilisé à la fois pour la requête et l'acquittement, ce qui limite le nombre de fils.
Si l'on utilise deux fils séparés, le codage des requêtes et acquittements peut se faire de plusieurs manières. Deux d'entre elles sont très utilisées et sont souvent introduites dans les cours sur les circuits asynchrones. Elles portent les noms de protocole à 4 phases et protocole à 2 phases. Elles ne sont cependant pas les seules et beaucoup de protocoles asynchrones utilisent des méthodes alternatives, mais ces deux méthodes sont très pédagogiques, d'où le fait qu'on les introduise ici.
- Le tout premier est paradoxalement le plus intuitif. Avec lui, les requêtes d'acquittement sont codées par un bit et/ou un front montant. Les signaux REQ/ACK sont mis à 1 en cas de requête/acquittement et repassent 0 s'il n'y en a pas. Le protocole assure que les deux signaux sont remis à zéro à la fin d'une transmission, ce qui est très important pour le fonctionnement du protocole. Lorsque l'émetteur envoie une donnée au récepteur, il fait passer le fil REQ de 0 à 1. Cela dit au récepteur : « attention, j'ai besoin que tu me fasses quelque chose ». Le récepteur va réagit au front montant et/ou au bit REQ et fait ce qu'on lui a demande. Une fois qu'il a terminé, il positionne le fil ACK à 1 histoire de dire : j'ai terminé ! les deux signaux reviennent ensuite à 0, avant de pouvoir démarrer une nouvelle transaction.
- Avec le protocole à deux phase, tout changement des signaux REQ et ACK indique une nouvelle transmission, peu importe que le signal passe de 0 à 1 ou de 1 à 0. En clair, les signaux sont codés par des fronts montants et descendants, et non par le niveau des bits ou par un front unique. Il n'y a donc pas de retour à 0 des signaux REQ et ACK à la fin d'une transmission. Une transmission a lieu entre deux fronts de même nature, deux fronts montants ou deux fronts descendants.
Le tout est illustré ci-contre. On voit que le protocole à 4 phases demande 4 fronts pour une transmission : un front montant sur REQ pour le mettre à 1, un autre sur ACk pour indiquer l'acquittement, et deux fronts descendants pour remettre les deux signaux à 0. Avec le protocole à 2 phases, on n'a que deux fronts : deux fronts montants pour la première transmission, deux fronts descendants pour la suivante. D'où le nom des deux protocoles : 4 et 2 phases.
Quand un seul fil est utilisé pour l'acquittement, un 1 sur ce fil signifie qu'une requête est en attente (le second composant est occupé), tandis qu'un 0 indique que le second composant est libre. Ce fil est manipulé aussi bien par l'émetteur que par le récepteur. L'émetteur met ce fil à 1 pour envoyer une donnée, le récepteur le remet à 0 une fois qu'il est libre.
Le Multi-Rail EncodingModifier
Les circuits asynchrones précédents, qui le Bundled Encoding, utilisent un fil par bit de données et un fil pour le signal REQ. Mais cette manière de faire a quelques défauts, le principal étant la sensibilité aux délais. Pour faire simple, la conception du circuit doit prendre en compte le temps de propagation dans les fils : il faut garantir que le signal REQ arrive au second circuit après les données, ce qui est loin d'être trivial. Pour éviter cela, d'autres circuits utilisent plusieurs fils pour coder un seul bit, ce qui donne un codage multiple-rails.
Le cas le plus simple utilise deux fils par bit, ce qui lui vaut le nom de codage dual-rail.
Il en existe plusieurs sous-types, qui différent selon ce qu'on envoie sur les deux fils qui codent un bit.
- Certains circuits asynchrones utilisent un signal REQ par bit, d'où la présence de deux fils par bit : un pour le bit de données, et l'autre pour le signal REQ.
- D'autres codent un bit de données sur deux bits, certaines valeurs indiquant un bit invalide.
Les bascules synchronesModifier
Utiliser une horloge demande cependant d'adapter les circuits vus précédemment, les bascules devant être modifiées. En effet, les bascules précédentes sont mises à jour quand un signal d'autorisation est mis à 1. Mais avec un signal d'horloge, les bascules doivent être mises à jour lors d'un front, montant ou descendant, peu importe. Pour cela, les bascules ont une entrée d'autorisation d'écriture modifiée, qui réagit au signal d'horloge. Les bascules commandées par une horloge sont appelées des bascules synchrones.
Les bascules synchrones peuvent mettre à jour leur contenu soit lors d'un front montant, soit d'un front descendant, soit les deux, soit lorsque la tension d'horloge est à 1. Suivant le cas, le symbole utilisé pour représenter l'entrée d'horloge est différent, comme illustré ci-dessous.
- Notons qu'en anglais, le terme bascule se dit flip-flop ou latch. De nos jours, le terme latch étant utilisé pour les bascules non-synchrones, alors que le terme flip-flop est utilisé pour désigner les bascules synchrones.
Les types de bascules synchronesModifier
Il existe plusieurs types de bascules synchrones, qu'on peut classer en fonction de leurs entrées-sorties.
La plus simple est la bascule D synchrone est une bascule D modifiée de manière à mettre à jour son contenu sur un front (montant). Celle-ci possède deux entrées : une entrée D sur laquelle on envoie la donnée à mémoriser (entrée d'écriture), et une autre pour l'horloge. Elle contient entre une et deux sorties : une pour la donnée mémorisée (sortie de lecture) et éventuellement une autre pour son opposé. Son fonctionnement est simple : son contenu est mis à jour avec ce qu'il y a sur l'entrée D, mais seulement lors d'un front (montant ou descendant suivant la bascule). Plus rares, certaines bascules D contiennent des entrées R et S pour les mettre à zéro ou à 1. La plupart des bascules D ont une entrée R pour les remettre à zéro, tandis que l'entrée S est absente, celle-ci étant peu utile.
Entrée CLK | Entrée D | Sortie Q |
---|---|---|
Front montant (ou descendant, suivant la bascule) | 0 | 0 |
1 | 1 | |
Pas de front montant | 0 ou 1 | Pas de changement |
Il existe aussi des versions synchrones des bascules RS à entrée Enable. Sur celles-ci, l'entrée Enable est juste remplacée par une entrée pour l’horloge. On les appelle des bascules RS synchrones.
Entrée CLK | Entrée R | Entrée S | Sortie Q |
---|---|---|---|
Front montant (ou descendant, suivant la bascule) | 0 | 0 | Pas de changement |
0 | 1 | Mise à 1 | |
1 | 0 | Mise à 0 | |
1 | 1 | Indéterminé. | |
Pas de front montant | 0 ou 1 | 0 ou 1 | Pas de changement |
Les bascules JK ont aussi leur version synchrone, les bascules JK synchrones.
Entrée CLK | Entrée R | Entrée S | Sortie Q |
---|---|---|---|
Front montant (ou descendant, suivant la bascule) | 0 | 0 | Pas de changement |
0 | 1 | Mise à 1 | |
1 | 0 | Mise à 0 | |
1 | 1 | Inversion du bit mémorisé | |
Pas de front montant | 0 ou 1 | 0 ou 1 | Pas de changement |
La bascule T est une bascule qui n'existe que comme bascule synchrone. Elle possède deux entrées : une entrée d'horloge et une entrée nommée T. Cette bascule inverse son contenu quand l'entrée T est à 1, mais à condition qu'il y ait un front sur le signal d'horloge. En clair, l'inversion a lieu quand il y a à la fois un front et un 1 sur l'entrée T. Si l'entrée T est maintenu à 1 pendant longtemps, cette bascule inverse son contenu à chaque cycle d'horloge. À ce propos, l'entrée T tire son nom du mot anglais Toggle, qui veut dite inverser.
Entrée CLK | Entrée T | Sortie Q |
---|---|---|
Front montant (ou descendant, suivant la bascule) | 0 | Pas de changement |
1 | Inversion du contenu de la bascule | |
Pas de front montant | 0 ou 1 | Pas de changement |
- Cette bascule est utilisée pour fabriquer des compteurs, des circuits dans lesquels des bits doivent régulièrement être inversées.
La bascule T simplifiée est une bascule T dont l'entrée T a été retiré. Cette bascule change d'état à chaque cycle d'horloge, sans besoin d'autorisation de la part d'une entrée T.
Entrée CLK | Sortie Q |
---|---|
Front montant (ou descendant, suivant la bascule) | Inversion du bit mémorisé |
Pas de front montant | Pas de changement |
L'intérieur d'une bascule synchroneModifier
Pour fabriquer une bascule synchrone, les solutions sont nombreuses et dépendent de si l'on parle d'une bascule D ou d'une bascule RS. Néanmoins, une méthode assez courante, et assez simple, est de partir d'une bascule RS non-synchrone, puis de la modifier pour la rendre synchrone. Les bascules les plus indiquées pour cela sont les bascules avec une entrée Enable : il suffit de transformer l’entrée Enable en entrée d'horloge. Évidemment, cela demande de faire quelques modifications. Il ne suffit pas d'envoyer le signal d'horloge sur l'entrée Enable pour que cela marche.
La méthode la plus simple consiste à enchaîner deux bascules asynchrones RS ou D l'une à la suite de l'autre, sous réserve que leurs deux entrées Enable subissent un petit traitement. Prenons l'exemple une bascule RS à entrée Enable. À elle seule, elle ne forme pas une bascule synchrone. Par contre, le circuit fonctionne si on enchaîne deux bascules RS à entrée Enable, et que les deux entrées Enable sont connectées à l'entrée d'horloge. De plus, l'entrée Enable de la seconde bascule est précédée d'une porte NON. Avec cette méthode, la première bascule est mise à jour quand l’horloge est à 0, la seconde étant mise à jour avec le contenu de la première quand l'horloge est à 1. Dans ces conditions, la sortie finale de la bascule est mise à jour après un front montant.
On peut faire exactement la même chose pour créer une bascule D synchrone, à savoir placer deux bascules D l'une à la suite de l'autre avec la seconde ayant son entrée Enable inversée. Avec cette méthode, la première bascule est mise à jour quand l’horloge est à 0, la seconde étant mise à jour avec le contenu de la première quand l'horloge est à 1. Dans ces conditions, la sortie finale de la bascule est mise à jour après un front montant.
Une autre méthode associe trois bascules RS normales, les deux premières formant une couche d'entrée qui commande la troisième bascule. Ces deux bascules d'entrée vont en quelque sorte traiter le signal à envoyer à la troisième bascule. Quand le signal d'horloge est à 0, les deux bascules d'entrée fournissent un 1 sur leur sortie : la troisième bascule reste donc dans son état précédent, sans aucune modification. Quand l'horloge passe à 1 (front montant), seule une des deux bascules va fournir un 1 en sortie, l'autre voyant sa sortie passer à 0. La bascule en question dépend de la valeur de D : un 0 sur l'entrée D force l'entrée R de la troisième bascule, un 1 forçant l'entrée S. Dit autrement, le contenu de la troisième bascule est mis à jour. Quand l'entrée d'horloge passe à 1, les bascules se figent toutes dans leur état précédent. Ainsi, la troisième bascule reste commandée par les deux bascules précédentes, qui maintiennent son contenu (les entrées R et S restent à leur valeur obtenue lors du front montant).
Il est aussi possible de créer une bascule D synchrone avec des transistors. Nous n'étudierons pas ce cas, qui est franchement compliqué et relève plus de l'état de l'art que d’autre chose. Tout au plus, nous pouvons nous contenter de vous donner le circuit obtenu, pour le plaisir de vos yeux.
Fabriquer des bascules synchrones à partir d'autres bascules synchronesModifier
Une bascule JK synchrone se fabrique facilement à partir d'une bascule RS synchrones, ce qui n'est pas étonnant quand on sait que leur comportement est presque identique, la seule différence étant ce qui se passe quand les entrées RS sont toutes les deux à 1. Il suffit, comme pour une bascule JK asynchrone, d'ajouter quelques circuits pour convertir les entrées JK en entrées RS.
La bascule D synchrone peut se fabriquer partir d'une bascule JK ou RS synchrone. Il suffit alors d'ajouter un circuit combinatoire pour traduire les entrées D et E en entrées RS ou JK.
La bascule T simplifiée est la version la plus simple de bascule T, celle qui n'a pas d'entrée T et se contente d'inverser son contenu à chaque cycle d'horloge. La fabriquer est assez simple : il suffit de prendre une bascule D synchrone et de relier sa sortie /Q à son entrée D. On peut aussi faire la même chose avec une bascule JK synchrone ou une bascule RS synchrone.
Une bascule T normale peut s’implémenter une bascule T simplifiée, une bascule RS synchrone ou une bascule JK synchrone. Pour le circuit basé sur une bascule T simplifiée, l'idée est de faire un ET entre l'entrée T et le signal d'horloge, ce ET garantissant que le signal d’horloge est mis à 0 si l'entrée T est à zéro.
La distribution de l'horloge dans un circuit complexeModifier
L’horloge est distribuée aux bascules et autres circuits à travers un réseau de connexions électriques qu'on appelle l'arbre d'horloge. L'arbre d'horloge le plus simple, illustré dans la première image ci-dessous, relie directement l'horloge à tous les composants à cadencer.
Les défauts inhérents aux arbres d’horlogeModifier
Un problème avec cette approche est la sortance de l'horloge. Cette dernière est connectée à trop de composants, ce qui la ralentit. Pour éviter tout problème, on peut ajouter des buffers, de petits répéteurs de signal. S'ils sont bien placés, ils réduisent la sortance nécessaire et empêchent que le signal de l'horloge s'atténue en parcourant les fils.
Un autre problème très fréquent sur les circuits à haute performance est qu'une bonne partie de la consommation d'énergie a lieu dans l'arbre d'horloge. Ce n'était pas le cas avec les anciens transistors dits bipolaires, ou les anciennes technologies de fabrication de circuits imprimés, mais c'est devenu un problème depuis l'arrivée des transistors CMOS. Nous en reparlerons dans le chapitre sur la consommation énergétique des ordinateurs, mais il est intéressant de mettre quelques chiffres sur ce phénomène. Entre 20 à 30% de la consommation énergétique des processeurs modernes a lieu dans l'arbre d'horloge. En comparaison, les circuits asynchrones se passent de cette consommation d'énergie, sans compter que leurs mécanismes de synchronisations sont moins gourmands en courant. Ils sont donc beaucoup plus économes en énergie et chauffent moins. Malheureusement, leur difficulté de conception les rend peu courants.
Le décalage d’horloge (clock skew)Modifier
Un problème courant sur les circuits à haute fréquence est que les fils qui transmettent l’horloge ont chacun des délais de transmission différents. La raison principale à cela est qu'ils n'ont pas la même longueur, ce qui fait que l'électricité met plus de temps à traverser les quelques micromètres de différence entre fils. En conséquence, les composants sont temporellement décalés les uns d'avec les autres, même si ce n'est que légèrement. Ce phénomène est appelé le décalage d'horloge, traduction du terme clock skew utilisé en langue anglaise. Il ne pose pas de problème à faible fréquence et/ou pour des fils assez courts, mais c'est autre chose pour les circuits à haute fréquence. Pour éviter les effets néfastes du clock skew sur les circuits haute-fréquence, on doit concevoir l'arbre d'horloge avec des techniques assez complexes.
Par exemple, on peut jouer sur la forme de l'arbre d'horloge. Dans les schémas du dessus, l'arbre d'horloge part d'un côté du processeur, de là où se trouve la broche pour l'horloge. En faisant cela, un côté du processeur recevra l'horloge avant l'autre, entraînant l'apparition d'un délai entre la gauche du processeur et sa droite. Pour éviter cela, on peut faire partir l'horloge du centre du processeur. Le fil de l'horloge part de la broche d'horloge, va jusqu’au centre du processeur, puis se ramifie de plus en plus en direction des composants. En faisant cela, on garantit que les délais sont équilibrés entre les deux côtés du processeur. Cependant, il existera quand même un délai entre les composants proches du centre et ceux sur les bords du processeur. Mais le délai maximal est minimisé. Entre un délai proportionnel à la largeur du processeur, et un délai proportionnel à la distance maximale centre-bord (environ la moitié de la diagonale), le second est plus faible.
Il arrive que le clock skew soit utilisé volontairement pour compenser d'autres délais de transmission. Pour comprendre pourquoi, imaginons que deux composants soient reliés l'une avec l'autre, le premier envoyant ses données au second. Il y a évidemment un petit délai de transmission entre les deux. Mais sans clock skew, les deux composants recevront l'horloge en même temps : le receveur captera un front montant de l'horloge avant les données de l'émetteur. En théorie, on devrait cadencer l'horloge de manière à ce que ce délai inter-composants ne pose pas de problème. Mais cela n'est pas forcément la meilleure solution si on veut fabriquer un circuit à haute fréquence. Pour éviter cela, on peut ajouter un clock skew, qui retardera l’horloge du receveur. Si le clock skew est supérieur ou égal au temps de transmission inter-composants, alors le receveur réceptionnera bien le signal de l'horloge après les données envoyées par l'émetteur. On peut ainsi conserver un fonctionnement à haute fréquence, sans que les délais de transmission de données ne posent problème. Cette technique porte le nom barbare de source-synchronous clocking.