v y ( T ) = v y ( 0 ) + ∫ 0 T a y ( t ) d t = V + ∫ 0 T 10 d t = V + 10 T {\displaystyle v_{y}(T)=v_{y}(0)+\int _{0}^{T}a_{y}(t)dt=V+\int _{0}^{T}10dt=V+10T}
y ( T ) = y ( 0 ) + ∫ 0 T v y ( t ) d t = ∫ 0 T ( V + 10 t ) d t = V T + 5 T 2 {\displaystyle y(T)=y(0)+\int _{0}^{T}v_{y}(t)dt=\int _{0}^{T}(V+10t)dt=VT+5T^{2}}
parce que ∫ 0 T V d t = V T {\displaystyle \int _{0}^{T}Vdt=VT} et ∫ 0 T 10 t d t = 5 T 2 {\displaystyle \int _{0}^{T}10tdt=5T^{2}}